

Moisture measurements in soil and green roofs: lessons, data and challenges

Paul Brouwer, Koppelting 30-01-2022

Pilot Soil moisture

- 2020 10 sensors placed in Amersfoort
- Four depths
 - 10 cm
 - 40 cm
 - 80 cm
 - 120 cm
- Temperature & soil moisture (capacity)

Resultaten

 Results first calibration: values >> 30% (maximum value expected in sand)

Soil Moisture measurements

> 2021 A lot of experiments

- Improve DIY sensor
- Improve understanding

Green Roof project

- 2021 4 Sensors placed in Amersfoort
- Measure capability of a green roof to perform
 - Water-bufferingInsulation

Challenges

Applies to measuring water-content by a capacitive measurements in various media

<u>1. Soil-specific effects</u>

• Why measurements >> 30%

Sensitive measurement Why measuring is not so easy

Measurement principle (Andries)

- Capacity between two electrodes depends on the medium in between
- $\epsilon = relative permittivity$
 - Air = 1
 - Water = 80

Soil specific effects

- Depend on measurement frequency
 - MW \approx ions
 - I \approx Clay, Silt

Do not occur in water

DIY sensor

- Measure at a higher frequency
- Measure at multiple frequencies
 - So we can correct later
- Test off-the-shelve capacitive sensors
 - PINOTECH SoilWatch (€25) ,
 - ∘ Catnip (€20),
 - DF–Robot (€3)

- Start with dry soil
- Add ..ml of water
- Mix & Measure

• ... Repeat

Add ...ml of water

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

40%

50%

- Frequentie
- 6kHz 60kHz 600kHz 1.6Mhz 10Mhz 20 Mhz 70Mhz

Frequency-effect

Effect of the soil on measurement

Multifrequency measurement allows to say something about soil properties as well !

Conclusions

- 1. With our current measurement principle we can improve measurement frequency up to 13Mhz
- 2. Soil specific effects reduce at higher measurement frequencies, but a bit remains
- 3. Multi-frequency measurements may allow also to get data on soil properties
- 4. But we need to add more (costly and SMD) components to the DIY sensor to do this

Challenges

- Applies to measuring water-content by a capacitive measurements in various media
- I. Soil-specific effects
 Why measurements >> 30%
- <u>2. Sensitive measurement</u>

• Why measuring is not so easy

Field-tests

1. Multifrequency DIY sensor on Pilot location

2. Pinotech sensors in the soil

3. Pinotech sensors on green roofs

Field-test Soil

Queekhoven (661)

Field-test Soil

Capacity of components: 300 pF

16 pF

- Capacity in air:
- Capacity in water: 28 pF

Measurement range 12pF
 (!) 0.00000000012 F

Field test – Soil

- Limnioveld (517)
 - Read-out is very stable for both sensors
 - Bottom sensor seems to respond opposite to rainfall initally

Conclusions

- Added components make multi-frequency measurement by DIY sensor less reliable
 - Needs some more attention

Pinotech sensors are relatively more stable, but also some side-effects can be seen

Workshops 2022

- Start with the Pinotech sensors for workshops
 - Green roof,
 - one moisture sensor sideways in the mat
 - Sensor station V2 above the roof
 - Soil moisture:
 - Two moisture sensors buried in the soil
 - 5m cable to go from station to soil
 - Sensor station V2
- Interested? <u>meedoen@meetjestad.net</u>
- Questions? <u>paul@debaai.com</u>

